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Abstract

A rational interpolation method for approximating a frequency response is presented.
The method is based on a product formulation of finite differences, thereby avoiding the
numerical problems incurred by near-equal-valued subtraction. Also, resonant pole and
zero cancellation schemes are developed that increase the accuracy and efficiency of the
interpolation method. Selection techniques of interpolation points are also discussed.

1 Introduction

Consider the linear time-invariant system given by the state-space model

t = Az + Bu (1)
y = Cz (2)
where A € R™4*"4_ B € R™4*X"8 C € R"°X™4, and the state vector, input vector, and
output vector, z, u, and y, respectively, are properly dimensioned. We shall refer to the

matrices, A, B, and C, as the state coupling matrix, the input coupling matrix, and the
output coupling matrix, respectively.

The frequency response of such a modeled system is defined as the Laplace transform of
the input-output relationship evaluated along the jw-axis,

G(w) = C(jwl — A)'B (3)

where
0<w<oo.

*This research was supported in part by the Air Force Office of Scientific Research under Contract No.
AFOSR91-0240.
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In this paper, a fast and reliable interpolation method to compute frequency response is
presented. The basic idea of this method is based on the simple Taylor series approximation

G(w+h)=To+Tih+ -+ Teh* + Ey (4)
but considered in the general interpolation form with k+1 interpolation points kg, hy, ..., hi:

Gw+h)=Go+Gi(h=ho)+ -+ Gir(h = ho)(h = hy)-+-(h — hg—1) + Ex.  (5)

The coefficient matrices, Go, G1,..., G are of size nc X npg as is the truncation error Ej.
Therefore, the cost of evaluating the matrix polynomial approximation
Pi(h) = Go+ Gi(h = ho) + -+ + Gi(h — ho)(h = hy) -+ - (h — hg_1) (6)

is just kngnc floating-point operations (flops). The cost of computing each coefficient ma-
trix is approximately the same as evaluating G by the method that would normally be
preferred.

The polynomial interpolation scheme works well as long as w is not near a resonant pole or
zero of the system. In order to avoid this problem, we introduce methods of preliminary
pole and zero cancellation. These greatly increase the accuracy of the interpolation scheme
while causing only a negligible increase in the cost of computing the coefficient matrices.

We shall also discuss the implementation of this algorithm including ideas on the selection
of interpolation points. ‘

2 Existing Frequency Response Methods

2.1 Stralghtforward Computatlon

An obvious method for computing frequency response for a system modeled in state—space
form is first to perform an LU decomposition in order to solve the linear system

(jwI - A)X = B, (7)
followed b& a matrix multiplication ini}eli'ing the solution to (7),

Gw)=CX.
This method does not exploit any special structure, e.g., sparse or banded, and therefore
would only be used for general systems. To compute a frequency response implementing
this method, for just one value of w, approxlmately Ind + 2(nB + nc)n? + nanpgnc flops
are required. As the number of desxred frequency pomts becomes large, the calculation of
the entire frequency response becomes computationally intensive.
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2.2 The Principal Vector Algorithm

In order to reduce computation cost, several methods have been developed in order to re-
duce the cost of solving the linear system (7) either by exploiting the structure of the state
coupling matrix or by implementing a similarity transformation to put the matrix A into
an exploitable form. One method of the latter variety is the Principal Vector Algorithm
(PVA) [10].

The idea of the PVA is to initially transform the state coupling matrix into a Jordan
Canonical Form (JCF). The algorithm uses the principal vectors to compute the JCF in a
more accurate way than previous such algorithms. Let

A=M"YUM (8)

where J is in Jordan form. If we substitute this identity into (3), the frequency response
becomes

Gw) = CMM-'(jwI- Ay 'MM™'B
= C@wI-J)'B. (9)

The initial transformation using the PVA to compute the JCF requires only O(n3) flops if
the state coupling matrix is not defective while O(n%) flops are required if the matrix A
is defective. Note that this transformation only occurs once, thus the cost is only incurred
once. The advantage occurs in computations at each frequency point where the cost is
reduced to O(n4 + nangnc) flops in the nondefective case and O(%nA + ngnpnc) flops
in the defective case. So the computational saving occurs after the computation of one
frequency point in the former case and n4 frequency points in the latter case.

Although this algorithm produces significant savings in the computational cost of a fre-
quency response, it can also frequently encounter numerical instabilities. First, the JCF is
extremely unstable. The slightest perturbation can change a defective matrix into a non-
defective matrix. Another problem is that the similarity transform may be ill-conditioned
with respect to inversion depending on the basis of eigenvectors. If they are guaranteed
to form a matrix which is well-conditioned with respect to inversion as would occur if the
matrix were normal, the algorithm is very effective.

2.3 The Hessenberg Method

Another algorithm which uses similarity transformations to put the state coupling ma-

trix into an exploitable form is the Hessenberg Method [4]. This algorithm is the current

standard for computing the frequency response for generic dense systems. The Hessenberg

Method, as its name implies, performs an initial transformation on the state coupling matrix
-~ to reduce it to upper Hessenberg form. So in this case, we use the identity

A=Q7'HQ,
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where H is in upper Hessenberg form, instead of the JCF identity (8), in the frequency
response (3). -
As with PVA, this initial transformation is performed only once at the start of the algo-
rithm at a cost of O(n3) flops. When this transformation is used, the cost of computing
the frequency response at each value of w becomes O(n%(ng+1)+nanpnc) flops. Usually,
np € n4 so a significant reduction in computation can be realized.

Fortunately, there always exists an orthogonal transformation to reduce the state coupling
matrix into an upper Hessenberg form. This prevents ill-conditioning from being introduced
into the calculations by the similarity transformation as can occur with the Principal Vector
Algorithm.

2.4 Sparse Systems

Many of today’s large ordered systems are sparse systems. A sparse system is one whose
modeling matrices have relatively few nonzero entries when compared to the total number
of entries. In such cases the Hessenberg Method should not be used. Instead of maintaining
sparsity, the initial transformation will create a large dense system which then must be
solved. There exist many storage techniques for sparse matrices which require a significantly
smaller amount of memory allocation than a full matrix of the same order would require.
Also, sparse matrix algorithms have been developed to exploit sparsity in order to reduce
the computational costs in comparison to their dense counterparts. (See [6], [9], and [7].)
These algorithms attempt to prevent the cost of solving the linear system (7) from growing
to O(n%) flops.

2.5 Frequency Selection Routines

The cost of computing an entire frequency response can also be reduced by eliminating
needless recalculations or overcalculations in attempts to get a desired resolution in the
solution. When the frequency mesh is too coarse to give the required information, usually
the user recomputes the entire frequency response. Often, the response from the previously
computed frequency values either is recalculated or just ignored in the new calculation.
Also, many times the user creates a fine frequency point mesh across the entire frequency
range. Usually, only in small subregions is the finer mesh needed. A coarser mesh would

suffice over the rest of the frequency range.
In an effort to eliminate these unnecessary calculations but still give the required accuracy,
so-called adaptive routines have been developed. These routines adapt the frequency point’s

selection to the characteristics of the system being analyzed.

One such adaptive scheme is similar in nature to the QUANCS adaptive integration routine
[1). The basic idea is first to select the endpoints of an interval in the desired frequency
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region. Then the frequency responses of the two points are compared. If the difference
between their magnitudes or their phases is greater than specified tolerances, the interval
is divided in half. Then the three points are compared. If their differences are outside
the tolerances, the subintervals are again halved. This subinterval halving continues until
the tolerances are met across the entire interval or until a specified number of frequency
points has been calculated. A single-input single-output variation of a method based on
subinterval halving has been implemented commercially [5).

The use of a priori information, e.g., the locations of poles and zeros of a system, can also
be used in the choice of frequency locations. More points are placed in the areas where the
poles and zeros of a given system have an effect. Fewer points are placed outside these areas.
Such a method is now being implemented in a linear system package [2] to automatically
choose the frequency range over which the frequency response is computed as well as to
determine the number of points needed to be calculated.

These adaptive schemes also can be combined to form hybrid routines. This would permit

an initial placement of points with the a priori method and then create the frequency mesh

to join the regions between the areas of the initial placement.

3 Polynomial Interpolation

In order to compute the coefficient matrices, Gy, ..., Gk, of the interpolation equation
Pe(h) = Go+Gi(h—ho) + ++++ Gi(h — ho)(h = h1) -+ -(h = hr-1) (10)

finite differences will be employed. The first-order difference is defined as

M(h1) — M(ho)

M[ho, h1] = - (11)
while higher-order differences are defined as
M[hi, ..., hy] = M[ho, ..oy Bn—
Miho, hay oy b = L1 w2 nd = MlPo, o Binca], (12)
hn - hO
If we let
M(h) = (jI - Ao)™ : (13)
where
Ap=—juwl+ A, (14)
the k*h-order interpolation approximation can be written as
P(h) = C(M(ho) + Mlho,h1](h = ko) +---
+Mlhg, by, ..., hi](h = ho)(h — h1) - - -(h — hg—1))B (15)
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with the interpolation error
E, = G(w+h)— Pi(h)

k
= C(M[hOa hiy .cey Py h] H(h — ki))B. (16)

1=0
Now, for convenience, define

Pi(h) = M(ho) + Mlho, hi](h — ho) + -

+M[ho, b1, ..., hi)(h = ho)(h = hy)---(h = hk_1) (17)
and
Ey = M(h) - Py(h)
= Mlho,h1, ..., hr, h] f_‘[)(h — ky). (18)

Although finite differences have a certain elegance to their formulation, they can encounter
numerical inaccuracies due to the subtraction of near-equal-valued quantities. An extreme
example of this is the case in which all of the interpolation points are the same. In theory,
the first-order difference is exactly the first derivative of M, but numerically it is useless.
Fortunately, the differences of the resolvent function (13), can be expressed in matrix prod-
uct forms which avoid these cancellation problems as the following theorem shows.

Theorem 1 For the resolvent function, the matriz difference functions in (12) satisfy

Mlho,ha, ... hm] = (=) M(ho)M(hy) - - - M (hyn). (19)

Proof. Using (13)

M(hy) - M(ho) = (il ~ Ag)™ = (jhol — Ao)™}
(Ghol — Ao)™? {jhol — Ao — (I — Ao)} (FhiT — Ao)™*
= (=5)(h1 — ho) M (ho)M (k).

Thus the first finite difference becomes
Mlho, b1} = —j M (ho)M(h1)

which proves (19) for m = 1. Now suppose that (19) is true for m—1. Since M(ho); coryM(hm)
_ all commute with each other, we rﬁnd that

M[hO’hla' . ﬂhm]
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= (M[hy,...,hm]| — Mlho,...,hm-1])/(hm = ho)

(=)™ (M(ha) - - M(hm) = M(ho) - - M(hm-1)) /(hm — ho)
(=)™ (M(h1) -+ - M(hm-1)) (M (hm) = M(ho)) /(hm = ho)
(=)™ (M(h1) -+ M(hm-1)) M(ho)M (hm)
(=3)"M(ho)M(h1) - - - M(hpm)-

Thus (19) is true for m and thus, by induction, the theorem is true. 0

If we now substitute the resolvent identity (19) into (17) and (18) and use the commutative
property of the resolvent functions, the interpolation approximation becomes

Pu(h) = M(ho)+ (=5)M(h1)M(ho)(h — ho) + -+
+(=)* M (he)M(hx-1) -+ M(ho)(h = ho) -+ (h = hi-1) (20)

with the error formula

Ex = M(h)- Fu(h)
k k
= (=) ] M) TT(h - R)M(R). (21)
i=0

=0
The next lemma gives an interpolation series for the resolvent using the original & + 1
interpolation points and setting all of the higher-order interpolation points equal to zero.
For convenience we shall use the notation M(0) = Mp. Note that if all of the interpolation
points are set equal to zero the analysis would be that of the Taylor series.

Lemma 2 Let hy,...,h; be given and set hy, = 0 for all m > k. For

LIRS Ag}j&) ljw = Al (22)
M may be ezpanded as

+o0 m m-1
M) =Y (=i T M) IT (k= hi). (23)

m=0 =0 =0

Proof: Let £ > k. By (21),
4 m m-1
M(h) - Zo(-j)"' [T M (k) I% (h - hi)
m= =0 =

¢ !
= (=) I M(B:) [J(h = hi)M(h)
i=0

=0

k k 4
= (-3 I M) TT(h - k)M (k) T] Moh
i=0 $

=0 =k+1

k k
= {(“J')“'1 [I M) TR~ hi)M(h)} (hMo)t*.
i=0

=0
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But (hAMp):F — 0 as £ - +oo if and only if p(hMo) < 1, which is the well-known
convergence requirement for a geometric series. From the definition of My, we have My =
(jwI — A)~!. Hence,

p(hMo) = |h|/ \min, ljw = Al
= [Ahl/r.
where
r= Ag&) ljw = Al (24)

1]

This lemma is also important in the development of a pole and zero cancelling routine.

4 Pole and Zero Cancellation

Polynomial interpolation approximation works well unless the LTI system being analyzed
has poles or zeros near the imaginary axis. Such poles and zeros are called resonant poles
and resonant zeros. The following examples provide the general idea of the effect.

Example: The deleterious effect of poles and zeros can be illustrated by means of a scalar
rational function example. Consider

142z + 322
f(x)=—+i-2:—z-=l+3z+632+”' (25)

We can use a polynomial approximation to evaluate this function at various values of z.
Suppose that we choose a second-order polynomial approximation:

7 f(z) =1+ 3z + 622,
If we evaluate f for z = 0.01 and = = 0.99, we get the approximations

f(0.01) = 1.0306,
and '
f(0.99) = 9.8506,
respectively. If we compare these to the actual values,
£(0.01) = 1.0306061
and

£(0.99)

592.03,
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we can see that as we approach a pole, a much higher-order approximation is required in
order to get even modest accuracy.

However, if initially we eliminate the pole before we make our calculations for values near
z = 1, the accuracy of the method increases dramatically. Again, use a second-order
approximation with pole cancellation, and we get

' 2
fiz)=(1- Z)U_%?_.Lji = (1+ 2z + 3z%).
After evaluating f, we let )
oS
o=

As can be seen in this case, the second-order interpolation is exact. In most cases, however,
only a marked increase in accuracy is realized.

In order to cancel a pole in our frequency response, we write

jh + jw — A)M(h)

_(
M®) =GR+ -0

and then find a polynomial approximation of (jh+jw—A)M(h). Therefore, our interpolation

becomes

Go+ Gi(h - ho)+ -+ + G};(h - ho) (h - hk-l)
(Gh+ jw - A) !
where the coefficient matrices are for a system devoid of the resonance problem. The

following lemma shows how to compute the new coefficient matrices while preserving the
form of the interpolating series.

Gw+h) = (26)

Lemma 3 Let hq,...,h; be given and set hy, = 0 for all m > k. For |h| < r, where r is
defined in (24), define the coefficient matrices F,(n") implicitly via

n 400 m-1
[1Gh + 5w - A)M(k) = 3 FD I (h-hs) (27)
=1 m=0 1=0
Then
FQ = (=)~ [I Mk (28)
1=0
and
F{) = (jh + jw = An)FP™0 4+ 5FTD, m=0,1,.. (29)

where we define Fﬁ) = 0 for all L.
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Proof. Equation (28) is immediate from (23). By (27),

(jh + jw - f\n)):F‘""’H(h h)—ZF‘"’"ﬁl(h hi). (30)
m=0 m=0 1=0

The assumptions that h,, = 0 for all m > k and |h| < r ensure that the series in (30) are
absolutely convergent. We may thus rearrange the left-hand summation as follows:

m~1
(jh + jw - An)ZF‘"'” [Tk -h)
m=0 1=0
m-1
= Z(ah + 5w = A+ 5(h = k) F&D TT (- hi)
m=0 =0
m~1
= Zuh + jw = A)EGD T (h - ko)
1=0
+ E FEL-Y H(h ki)
m=0
m-1
= Zuh + jw = A)EGD TT (h - ho)
=0
m~-1
+ 3R T (b - o)
m=0 =0
+oc0 m—1
= 3 (Ghm+ 5w = A)FSD + 5FES)) T (B - ha).
m=0 =0
Comparison with (30) gives (29). 0

If we need to cancel resonant zeros, we then need to find a polynomial approximation of
Uk%%)-?' The following lemma illustrates how this is done.

Lemma 4 Let ho, hy, ..., ht be given and set hy, = 0 for all m > k. For |h| < r, where r
is defined in (24), define the coefficient matrices D implicitly via

n m-1
M(k) = ]Gk + jw - 2 E D& T (h - ki) (31)
t=1 m=0 i=0
Then m
DR = (=)™ [T M(hs), (32)
=0
and
DY) = (D&Y - ;DT )/(Gk + jw = za), m=0,1,... (33)

where we define D(_? =0 forall L.
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Proof: The proof is similar to that of the preceding lemma except that we start with
the identity

400 " om=1 400 m-1
Gh+jw=2) 3 D [[(h-hi)= 3 DG T (h - ki) (34)
m=0 =0 m=0 =0
and continue from there. a

5 Frequency Response Interpolation Algorithm

Step 1 Solve for X in

(j(ho+w) - A)Xo=B , (35)
and then solve recursively for X;,..., X} in
(j(hm + “’)I - A)X'm =—jXm-1 - (36)

Step 2 Let X,(,?) = X, and define
X = (il + jo = A)XED +5x570 . 0<m<k, (37)
with X4, =0for0 < £ < n.

Step 3 Let XM = x™ and define
XM = (xE=0 _Gx WOy Gl 4 jw—2) , 0<m<k, (38)
with X4, =0for0< £ < 1.

Step 4 Form the coefficient matrices Go,...,Gk via
G=Ccxm0 | (39)
Step 5

Gw+h) = (Go+Gi(h=ho)+- -+ Gi(h—ho)(h = hp-1)))

n£=1(j°-’ +jh - z)
o Gw+ jh = Am) (40)

Remark

The method used to solve the recursive linear systems in the first step of the algorithm
depends on the initial structure of the LTI system being investigated. If the system has an
exploitable structure such as sparsity, an algorithm that exploits that particular structure
will be used. If no such structure exists, an initial similarity transformation, most likely to
upper Hessenberg form, will be applied to the system.
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6 Interpolation Point Selection

The placement of the interpolation points is of great importance in getting a good ap-
proximation to the frequency response. We have tested three simple methods to place the
interpolation points: linear, loglinear, and Chebyshev. We have also tested placement using
the a priori information of the pole locations.

Since frequency response is usually plotted against frequency on a log scale, the use of lin-
early spaced interpolation points does not usually perform well. It places too many points
at the end of an interval. Both the loglinear and the Chebyshev interpolation point place-
ments have shown promise. The loglinear placement technique usually gives an excellent
approximation in the beginning to the middle of an interval, but sometimes can fail mis-
erably at the end of an interval. The Chebyshev interpolation points (see [8]) spread the
approximation error fairly evenly across the interval. However, several times the error of
the Chebychev selection, although acceptable, is larger than that of the acceptable range
of a loglinear interpolation of the same size. Currently, we are investigating possible hybrid
techniques to exploit the best of both placement schemes.

In the cases where we have tried placing interpolation points with the knowledge of the poles
and zeros of the system the results have been mixed in comparison to the two previously
mentioned techniques. What has been learned is that under no circumstances should the
interpolation points be the same as the resonant frequency of a resonant pole or zero. How-
ever, placing an interpolation point near the resonant frequency improves the approximation
significantly.

7 Conclusion

In this paper we have presented a rational interpolation method for computing the frequency
response of a system. A significant computational savings can be achieved over several of
the current methods for computing a frequency response. An error analysis for the method,
together with other details, can be found in [3].

The method presented in this paper avoids the numerical problem of subtraction of near
equal quantities in the difference terms by using the resolvent identity of Theorem 1. Also,
simple pole and zero cancellation techniques significantly increase the accuracy of the algo-
rithm.

We are currently writing a software package to implement the algorithm in this paper. In
addition, we are extending this algorithm for use with descriptor systems.
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